search for




 

M1 and M2 polarization of macrophages: a mini-review
Med Biol Sci Eng 2019;2(1):1-5
Published online January 31, 2019
© 2019 Medical Biological Science and Engineering.

Kun Yeong Lee

Department Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
Correspondence to: Kun Yeong Lee
Department Laboratory Medicine and Pathology, Mayo Clinic, Stabile 2-42, 200 First St. SW, Rochester, MN55905, USA
Tel: +1-507-538-0042 E-mail: Lee.Kun@mayo.edu
ORCID: https://orcid.org/0000-0002-5165-2856
Received May 9, 2018; Revised May 28, 2018; Accepted May 30, 2018.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The tissue microenvironment regulates differentiation of precursor monocytes into macrophages. In response to the presence of microbial products, stimulated lymphocytes, or damaged cells in the microenvironment, macrophages differentiate into distinct functional populations. The M1 macrophages are characterized by the generation of high levels of pro-inflammatory cytokines, antimicrobial properties, increased production of reactive nitrogen and oxygen intermediates, and induction of Th1 response. In contrast, M2 macrophages are characterized by their involvement in tissue remodeling, immune regulation, tumor promotion, and efficient phagocytosis. In this minireview, we discuss the stimulation, markers, cytokines, and signaling molecules involved in macrophage polarization.
Keywords : Macrophages; Polarization; Tumor-associated macrophages
References
  1. Ovchinnikov DA. Macrophages in the embryo and beyond: much more than just giant phagocytes. Genesis 2008;46:44762.
    CrossRef
  2. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002;23:549-55.
    CrossRef
  3. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, et al. Macrophage polarization in tumour progression. Semin Cancer Biol 2008;18:349-55.
    Pubmed CrossRef
  4. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014;6:13.
    Pubmed
  5. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010;140:883-99.
    Pubmed CrossRef
  6. Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. J Immunol 2008;181:3733-9.
    Pubmed CrossRef
  7. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004;25:67786.
    Pubmed CrossRef
  8. Rőszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm 2015;2015:816460.
    Pubmed KoreaMed CrossRef
  9. Chen Y, Zhang S, Wang Q, Zhang X. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol 2017;10:36.
    Pubmed KoreaMed CrossRef
  10. Coussens LM, Werb Z. Inflammatory cells and cancer: think different! J Exp Med 2001;193:F23-6.
    Pubmed CrossRef
  11. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001;357:539-45.
    CrossRef
  12. Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, van Damme J, et al. Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol 2000;164:762-7.
    Pubmed CrossRef
  13. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature 2013;496:44555.
    Pubmed KoreaMed CrossRef
  14. Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-kB signaling pathways. Nat Immunol 2011;12:695-708.
    Pubmed CrossRef
  15. Schonthaler HB, Guinea-Viniegra J, Wagner EF. Targeting inflammation by modulating the Jun/AP-1 pathway. Ann Rheum Dis 2011;70 Suppl 1:i109-12.
    Pubmed CrossRef
  16. Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol 2011;12:231-8.
    Pubmed CrossRef
  17. Ohmori Y, Hamilton TA. IL-4-induced STAT6 suppresses IFN-gamma-stimulated STAT1-dependent transcription in mouse macrophages. J Immunol 1997;159:5474-82.
    Pubmed
  18. Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 2010;11:936-44.
    Pubmed CrossRef
  19. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007;447:1116-20.
    Pubmed KoreaMed CrossRef
  20. Ruffell D, Mourkioti F, Gambardella A, Kirstetter P, Lopez RG, Rosenthal N, et al. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci U S A 2009;106:17475-80.
    Pubmed KoreaMed CrossRef


January 2019, 2 (1)
Full Text(PDF) Free

Social Network Service
Services

Cited By Articles
  • CrossRef (0)
  • Crossref
  • Google Scholar
  • ORCID